An Entropy-Based Position Projection Algorithm for Motif Discovery

نویسندگان

  • Yipu Zhang
  • Ping Wang
  • Maode Yan
چکیده

Motif discovery problem is crucial for understanding the structure and function of gene expression. Over the past decades, many attempts using consensus and probability training model for motif finding are successful. However, the most existing motif discovery algorithms are still time-consuming or easily trapped in a local optimum. To overcome these shortcomings, in this paper, we propose an entropy-based position projection algorithm, called EPP, which designs a projection process to divide the dataset and explores the best local optimal solution. The experimental results on real DNA sequences, Tompa data, and ChIP-seq data show that EPP is advantageous in dealing with the motif discovery problem and outperforms current widely used algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an Efficient Hybrid Method for Motif Discovery in DNA Sequences

This work presents a hybrid method for motif discovery in DNA sequences. The proposed method called SPSO-Lk, borrows the concept of Chebyshev polynomials and uses the stochastic local search to improve the performance of the basic PSO algorithm as a motif finder. The Chebyshev polynomial concept encourages us to use a linear combination of previously discovered velocities beyond that proposed b...

متن کامل

Neighbourhood Thresholding for Projection-Based Motif Discovery

The PROJECTION algorithm by Buhler and Tompa is one of the best existing methods for solving hard motif discovery problems for monad motifs of fixed length l. In this paper we introduce the AGGREGATION algorithm, which like PROJECTION projects all l-mers from the given input sequences into buckets, but uses a different scheme for selecting buckets for subsequent refinement search. This new neig...

متن کامل

A profile-based deterministic sequential Monte Carlo algorithm for motif discovery

MOTIVATION Conserved motifs often represent biological significance, providing insight on biological aspects such as gene transcription regulation, biomolecular secondary structure, presence of non-coding RNAs and evolution history. With the increasing number of sequenced genomic data, faster and more accurate tools are needed to automate the process of motif discovery. RESULTS We propose a d...

متن کامل

Hybrid Gibbs-sampling algorithm for challenging motif discovery: GibbsDST.

The difficulties of computational discovery of transcription factor binding sites (TFBS) are well represented by (l, d) planted motif challenge problems. Large d problems are difficult, particularly for profile-based motif discovery algorithms. Their local search in the profile space is apparently incompatible with subtle motifs and large mutational distances between the motif occurrences. Here...

متن کامل

A Hybrid Grey-Game-MCDM Method for ERP Selecting Based on BSC

An enterprise resource planning (ERP) software is needed for industries and companies that want to develop in future. Many of the manufactures and companies have a problem with ERP software selection. An inappropriate selection process can affect both the implementation and the performance of the company significantly. Although several models are proposed to solve this problem many of them did n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016